Different Implications

If p and q are two statements then a general implication statement can be given as if p then q, i.e. p→q.

The different forms of implications are as follows:

  1. Contrapositive:

If p→q is an implication then its contrapositive is given as ~q→~p.

For example, find contrapositive of following statement:

If n is a multiple of 6, then n is a multiple of 12.

Contrapositive: If n is not a multiple of 12, then n is not a multiple of 6.

A  statement and its contrapositive are logically equivalent.

img_20161205_222057

2. Converse:

If p→q is an implication then its converse is given as q→p.

For example, find converse of the following statement:

If a and b are odd numbers then a+b is an even number.

Converse: If a+b is an even number then a and b are odd numbers.

A statement and its converse are not logically equivalent.

img_20161205_222146

3. Inverse:

If p→q is an implication then its inverse is given as ~p→~q.

For example, find inverse of the following statement:

If a student gets 60% then student gets first class.

Inverse: If a student doesn’t get 60% then student doesn’t get first class.

A statement and its inverse are logically equivalent.

img_20161205_222159

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s